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Abstract. We consider the Laplacian of a finite network as a kernel on the vertex set. The
properties of this kernel allow us to assign to every proper set an equilibrium measure and a
capacity. So, we can build a discrete Potential Theory with respect to the Laplacian kernel on
networks. We aim here at showing how equilibrium measures can be used to obtain simple
expressions for both Poisson and Green kernels and hence to deduce nice expressions for the
effective resistance and the hitting time.

1 Introduction

A systematic treatment of Potential Theory with respect to a kernel can be found
in the work of B. Fuglede [7]. Although in that work the particular case in which
the underlying space is finite was not considered explicitly, the main results in this
context can be deduced without difficulty from the general case. The finite case was
explicitly considered in classical works of G. Choquet and J. Deny, for instance, see
[4]. However, the kernels considered in all these papers are always non negative,
which corresponds to developing Potential Theory with respect to the Green kernel.

In the present work we deal with the Potential Theory of a signed kernel on a finite
network. Since any linear operator on a finite space can be considered as an integral
operator, the Laplace operator of a network can be interpreted as a kernel on the vertex
set. This approach (see [2, 3]) differs from both the classical Potential Theory with
respect to the Green kernel and from the Dirichlet Forms Theory.

In Section 2 we present, for the sake of completeness, some of the results on
the Discrete Potential Theory with respect to the Laplacian kernel obtained in [2, 3].
Essentially, these results follow from the fact that this kernel satisfies two fundamental
principles, namely the energy and Frostman’s maximum principles, which allow us
to solve equilibrium problems whose solutions will be the basic tool in the rest of
the work. Moreover, the Wiener capacity with respect to the Laplacian kernel has
some remarkable properties. In particular, it gives information about the connection
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between a subset and its complement and allows us to characterize independent vertex
sets.

We further study some relevant concepts both in the context of electrical network
and in the context of reversible Markov Chains. Specifically, we study the effective
resistance and the hitting time. Since we want to characterize these concepts for all
the subsets of a network, and such concepts are obtained from the solution of suitable
boundary value problems, we are focused on the analysis of the kernels that solve the
corresponding boundary value problems. Hence in Section 3 we deal with the study
of the Poisson kernel.

The authors gave in [3] a relation between the Poisson kernel and the normal deriva-
tive of the Green kernel, analogous to the continuous case. Here we obtain new and
simple expressions for the Poisson and Green kernels in terms of equilibrium measures
which, in particular, allow us to prove that the Laplacian verifies the condenser prin-
ciple. In addition, we get some of the more relevant properties of these kernels. This
link between kernels and equilibrium measures enables us to get explicit expressions
for the effective resistance and for the hitting time in terms of equilibrium measures
(Section 4). The expression of the Green function in terms of effective resistances
(inverse resistive) has been proved by different authors by using distinct techniques,
see for instance Coppersmith et al. [6], Metz [8] and Ponzio [9]. The results presented
here allow us to obtain a straightforward proof of that relation.

Throughout the paper � = (V , E, c) denotes an electrical network, that is, a
simple and finite connected graph, with vertex set V and edge set E, in which each
edge (x, y) has been assigned a conductance c(x, y) > 0. The order of � is n = |V |.
Given a subset F ⊂ V , we denote by Fc its complement in V , and by δ(F ) = {x ∈
Fc : c(x, y) > 0 for some y ∈ F } and ∂F = {(x, y) ∈ E : x ∈ F, y ∈ Fc} its vertex
boundary and its edge boundary, respectively. We also use the notation F = F ∪δ(F ).
The Laplacian of � is the matrix of order n whose entries are L(x, y) = −c(x, y) for
all x �= y and L(x, x) = c(x), where c(x) = ∑

y∈V c(x, y).

2 Potential Theory in finite spaces

Let V be a finite space with n points endowed with the discrete topology, and F

be a non-empty subset of V . Then, the set of functions on V , denoted by C(V ),
and the set of non-negative functions on V , C+(V ), are naturally identified with R

n

and the positive cone of R
n, respectively. If u ∈ C(V ), its support is the subset

supp(u) = {x ∈ V : u(x) �= 0}. Moreover, we consider the sets C(F ) = {u ∈ C(V ) :
supp(u) ⊂ F } and C+(F ) = C(F ) ∩ C+(V ).

A symmetric function K : V × V −→ R will be called a kernel on V . Clearly, a
kernel on V is identified with a real symmetric matrix of order n.

On the other hand, the set of Radon measures on V , denoted by M(V ), is identified
with C(V ) and hence, if µ ∈ M(V ), its support is defined as above. Therefore, the
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sets of Radon measures supported by F , M(F ), and of positive Radon measures
supported by F , M+(F ), are identified with C(F ) and C+(F ), respectively. In
addition, if µ ∈ M(V ) its mass is given by ||µ|| = ∑

x∈V µ(x) and we denote by
M1(F ), the set of positive Radon measures supported by F with unit mass. Finally,
for each x ∈ V , εx stands for the Dirac measure on x, whereas the measure

∑
x∈F εx

will be denoted by 1F . When F = V , the subscript in the above expression will be
omitted.

If � = (V , E, c) is a network then its Laplacian can be considered as a kernel on
V . So, given µ ∈ M(V ) we will call potential and energy of µ with respect to L, the
function and the real number given respectively by

Lµ(x) =
∑
y∈V

c(x, y)
(
µ(x) − µ(y)

)
x ∈ V and I(µ) = 〈Lµ, µ〉.

The application I : M(V ) −→ R that assigns to each measure its energy, is a quadratic
functional, whose associated bilinear form will be denoted by I(·, ·) and is given by

I(µ1, µ2) = 〈Lµ1, µ2〉 = 1

2

∑
x,y∈V

c(x, y)(µ1(x) − µ1(y))(µ2(x) − µ2(y))

= 〈µ1, Lµ2〉.
Proposition 2.1. The Laplacian kernel L satisfies the energy principle, i.e. L is
strictly positive definite on {µ ∈ M(V ) : ||µ|| = 0}.
Proof. Note that I(µ) = ∑

x,y∈V c(x, y)(µ(x) − µ(y))2 ≥ 0. Moreover, I(µ) = 0
iff µ = a1, a ∈ R, since � is connected.

Proposition 2.2. The Laplacian kernel L satisfies Frostman’s maximum principle,
i.e. maxx∈V {Lµ(x)} = maxx∈supp(µ){Lµ(x)}, for all µ ∈ M+(V ).

Proof. Let µ ∈ M+(V ) and F = supp(µ). If we consider x ∈ F such that µ(x) =
maxy∈F µ(y), then Lµ(x) ≥ 0. Moreover, for any x ∈ Fc, Lµ(x) ≤ 0.

Proposition 2.3. The Laplacian kernel satisfies the equilibrium principle, i.e., for
every proper set F ⊂ V there exists a unique νF ∈ M+(F ) such that

LνF = 1 on F.

Moreover, supp(νF ) = F .

Proof. It is known that if a kernel satisfies the energy and the maximum principles
then

min
µ∈M1(F )

{I(µ)} = min
µ∈M1(F )

max
x∈V

{Lµ(x)},

see, for instance, [7] for the general case and [3] for the discrete setting.
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Moreover, the unique solution of the above problem, σ ∈ M1(F ), is such that
Lσ = I(σ ) in F and hence νF = I(σ )−1 σ .

To prove the last claim, suppose that there exists x ∈ F such that νF (x) = 0. Then
LνF (x) = − ∑

y∈V c(x, y)νF (y) ≤ 0, which contradicts LνF = 1 in F .

For each proper set F the measure νF is called the equilibrium measure for F .
Next result is the well-known minimum principle for superharmonic functions.

Here we give the proof for completeness and because monotonicity of equilibrium
measures can be deduced straightforwardly from it.

Proposition 2.4. Let F be a proper subset of V . The Laplacian L, as an operator,
verifies the minimum principle, i.e., if u ∈ C(F ) is such that L(u) ≥ 0 on F , then

min
x∈δ(F )

{u(x)} ≤ min
x∈F

{u(x)}.

Proof. Let m = minx∈δ(F ){u(x)}, and consider w = u−m1F . Then, Lw = Lu ≥ 0
on F and w ≥ 0 on Fc. Let x ∈ F be such that w(x) = minz∈F {w(z)}. To conclude,
it is enough to show that w(x) ≤ 0 implies w(x) = 0.

Suppose that w(x) ≤ 0. Then, w(x) ≤ w(z) for all z ∈ V and therefore

0 ≤ Lw(x) =
∑
z∈V

c(x, z)(w(x) − w(z)) ≤ 0,

which implies that w(x) = w(z) for each z ∈ V such that c(x, z) �= 0. Of course,
if c(x, z) > 0 for some z ∈ Fc, as w(z) ≥ 0, necessarily w(x) = 0. Otherwise as
� is connected and F is a proper set there exists y ∈ F such that w(y) = w(x) and
c(y, z) > 0 for some z ∈ Fc, and hence w(x) = 0.

Corollary 2.5. If F and H are proper subsets such that F ⊂ H , then νF ≤ νH .

The consideration of the Laplacian as a kernel in the context of Potential Theory
allows us to introduce the Wiener capacity of a subset. We show that this concept is
useful in order to obtain information about the connection between a subset of vertices
and its complement. In [2] the authors developed an analogous approach in the case
of graphs.

For each F ⊂ V , the value I (F ) = infµ∈M1(F ) I(µ) is called the energy of F .

Moreover, the value cap(F ) = 1
I (F )

is known as the Wiener capacity of F . The

unique measure σ ∈ M1(F ) such that I (F ) = I(σ ) is called the capacitary measure
for F . It is easy to check that the Wiener capacity is a monotone set function, i.e.,
cap(F ) ≤ cap(H) when F ⊂ H . On the other hand, if F is a proper set and νF is its
equilibrium measure, then I(νF )−1 = ||νF || = cap(F ).
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Proposition 2.6. Let F ⊂ V be such that F = ⋃s
i=1 Fi , where Fi , i = 1, . . . , s, are

the vertex sets of the connected components of the subnetwork induced by F . Then

cap(F ) =
s∑

i=1

cap(Fi).

Proof. If F = V , then s = 1, because � is connected. Hence, the result holds.
Suppose that F is a proper subset of V . For each i = 1, . . . , s, let µi be the

capacitary measure for Fi . If β = ∑s
i=1 cap(Fi) and we consider µ ∈ M1(F )

defined as

µ = 1

β

s∑
i=1

cap(Fi)µ
i,

then Lµ = 1
β

∑s
i=1 cap(Fi)Lµi . If x ∈ F , there exists k such that x ∈ Fk . Moreover,

as x /∈ Fj for all j �= k, then Lµi(x) = I (Fk) if i = k and Lµi(x) = 0 otherwise.
Hence, Lµ(x) = 1

β
for all x ∈ F , which implies that I (F ) = 1

β
and the result follows.

The above result states that the Wiener capacity is additive with respect to the
connected components of an induced subnetwork. However, it is not true for an
arbitrary union of subsets of V . In fact, the following corollary shows that the Wiener
capacity is not subadditive.

Corollary 2.7. If F ⊂ V , then cap(F ) ≥ ∑
x∈F cap({x}). Moreover, the equality

holds iff F is an independent vertex set.

Proof. Note that I ({x}) = c(x), since Lεx(x) = c(x). Consider the equilibrium
measure νF for F , and let σ(x) = νF (x) − 1

c(x)
1F (x), x ∈ V . Then, for each x ∈ F

Lσ(x) =
∑
y∈F

c(x, y)

c(y)
≥ 0.

Hence, νF (x) ≥ 1
c(x)

since L satisfies the minimum principle, which implies that

cap(F ) ≥ ∑
x∈F

1
c(x)

.

On the other hand, if F is an independent vertex set the equality follows from the
above proposition. Conversely, suppose that F is a set of non independent vertices.
Then there exist x0, y0 ∈ F such that c(x0, y0) > 0 which implies that Lσ(x0) > 0
and hence νF (x0) > 1

c(x0)
.

The Wiener capacity for the Laplacian kernel is not subadditive due to the fact
that the Laplacian is not a positive kernel. If q = maxx,y∈V {c(x, y)} and F ⊂ V ,
the value (I (F ) + q)−1 can be seen as the Wiener capacity of F with respect to the
positive kernel L+ qJ, where J denotes the kernel whose values are equal to one. In
fact, the Wiener capacity is subadditive for a positive kernel, see [7, p. 157].



368 Enrique Bendito, Ángeles Carmona and Andrés M. Encinas

Proposition 2.8. Let F1, . . . , Fs ⊂ V and F = ⋃s
i=1 Fi . Then

(I (F ) + q)−1 ≤
s∑

i=1

(I (Fi) + q)−1.

In particular, we have the following result.

Corollary 2.9. Let F ⊂ V be a proper subset. Then cap(F ) cap(F c) ≥ 1
q2 .

Before ending this section let us determine the Wiener capacities and the capacitary
measures for connected proper subsets of a weighted path which will help us to study
the sharpness of the lower bound in the above corollary.

Given a path Pn with n ≥ 2 vertices and conductances cii+1, i = 1, . . . , n − 1,
consider a proper subset F = {x1, . . . , xs} of Pn. Then σ(xj ) = ∑s

i=j
i

cii+1
for any

xj ∈ F , and cap(F ) = ∑s
i=1

i2

cii+1
. By considering p = min(x,y)∈E{c(x, y)}, we get

that
1

6q2 (n − 1)n(2n − 1) ≤ cap(F ) cap(F c) ≤ 1

242p2 n2(n + 1)2(n + 2)2.

On the other hand, in a complete network in which each edge has conductance q,
the product of capacities attains its minimum value for any subset. The differences in
the behaviour of the capacity products are due to the different degrees of connection
between the vertices of F and Fc. In particular, the following result characterizes
when equality holds in Corollary 2.9.

Proposition 2.10. Let F ⊂ V be a proper subset. Then,

cap(F ) cap(F c) = 1

q2 ⇐⇒ |∂F | = |F ||Fc| and c(x, y) = q, ∀(x, y) ∈ ∂F.

Moreover, the capacitary measures for F and Fc are the uniform measures on F and
Fc respectively.

Proof. Note that |∂F | = |F ||Fc| and c(x, y) = q, ∀(x, y) ∈ ∂F iff
∑

y∈Fc c(x, y) =
q|Fc| for all x ∈ F and

∑
x∈F c(x, y) = q|F | for all y ∈ Fc. In addition, the uniform

measures on F and Fc, µ1 = 1
|F |1F and µ2 = 1

|Fc|1Fc , satisfy Lµ1 = q|Fc|
|F | on F

and Lµ2 = q|F |
|Fc| on Fc, respectively. Therefore, they are the capacitary measures for

F and Fc, and cap(F ) cap(F c) = 1
q2 .

Conversely, if K = L + qJ and we consider 1 = 1F + 1Fc , then

qn2 = 〈K1, 1〉 = 〈K1F , 1F 〉 + 〈K1Fc , 1Fc 〉 + 2〈K1F , 1Fc 〉
≥ (I(1F ) + q|F |2) + (I(1Fc ) + q|Fc|2)
≥ |F |2(I (F ) + q) + |Fc|2(I(F c) + q)

≥ (|F |+|Fc|)2

1
I (F )+q

+ 1
I (Fc)+q

= n2

1
I (F )+q

+ 1
I (Fc)+q

.
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On the other hand, cap(F ) cap(F c) = 1
q2 iff 1

(I (F )+q)
+ 1

(I (F c)+q)
= 1

q
. Therefore,

by using the above inequalities, we conclude that

cap(F ) cap(F c) = 1

q2 �⇒ 〈K1F , 1Fc 〉 = 0.

Finally, it is enough to observe that

|∂F | = |F ||Fc| and c(x, y) = q, ∀(x, y) ∈ ∂F iff 〈K1F , 1Fc 〉 = 0,

because 〈K1F , 1Fc 〉 = q|F ||Fc| −∑
(x,y)∈∂F c(x, y).

3 The Poisson Kernel

In this section we consider a semihomogeneous Dirichlet Problem, and we solve it
by considering the associated Poisson Kernel. Our purpose is to use such a kernel for
finding an expression of the effective resistance between subsets, in the next section.

Let F ⊂ V be a proper subset. A Semihomogeneous Dirichlet Problem on F

consists in finding, given g ∈ C(δ(F )), a function u ∈ C(F ) such that

Lu(x) = 0, x ∈ F,

u(x) = g(x), x ∈ δ(F ).

}
(3.1)

As shown in [3], this problem has a unique solution which can be obtained by
means of the Poisson Kernel.

A function P : F × δ(F ) −→ R is called the Poisson kernel for Problem (3.1) if
for all y ∈ δ(F ), Py = P(·, y) is the solution of the following problem:

LPy = 0, in F,

Py = εy, in δ(F ).

}
(3.2)

From the definition, it is easy to check that the function u(x) = ∑
y∈δ(F ) P (x, y)g(y)

is the solution of Problem (3.1). Now we show how the use of equilibrium measures
allow us to obtain an expression of the Poisson Kernel for every proper set F such
that |δ(F )| ≥ 2.

Proposition 3.1. Let F ⊂ V be a proper set. If F = V \ {y}, then δ(F ) = {y} and
Py = 1. Otherwise, the Poisson Kernel for F is given by:

P(x, y) =
(
νF∪{y}(y)

)−1(
νF∪{y}(x) − νF (x)

)
.

As the Poisson kernel for Problem (3.1) only depends on F , we will call it the
Poisson kernel for F and it will be denoted by P F .
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Corollary 3.2 (The condenser principle). Let F be a proper subset of V and {A, B} a
partition of δ(F ). Then, u ∈ C(F ), the unique solution of the boundary value problem

Lu(x) = 0 if x ∈ F,

u(x) = 1 if x ∈ A,

u(x) = 0 if x ∈ B,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is such that 0 ≤ u ≤ 1 on V , Lu ≥ 0 on A, and Lu ≤ 0 on B.

Proof. From Proposition 3.1, the solution of the boundary value problem is

u =
∑
y∈A

νF∪{y} − νF

νF∪{y}(y)
.

Moreover, from Corollary 2.5, u ≥ 0 on V , which implies that if x ∈ B then Lu(x) =
− ∑

z∈V c(x, z)u(z) ≤ 0. Consider now v = 1 − u, then v is the solution of

Lv(x) = 0 if x ∈ F,

v(x) = 0 if x ∈ A,

v(x) = 1 if x ∈ B.

⎫⎪⎬
⎪⎭

Therefore, reasoning as above, v ≥ 0 on V , Lv ≤ 0 on A and a fortiori u ≤ 1 and
Lu ≥ 0 on A.

Proposition 3.3. If F is a proper subset of V , then 0 ≤ P F
y ≤ 1 for each y ∈ δ(F ).

Moreover, if F �= V −{y} then LP F
y (y) > 0, and when F is connected, 0 < P F

y < 1
on F for each y ∈ δ(F ).

Proof. If y ∈ δ(F ) and we consider u = P F
y , then u satisfies Lu = 0 on F , u(y) = 1

and u = 0 on δ(F ) − {y}. Then, applying the condenser principle with A = {y}
and B = δ(F ) − {y}, we get that 0 ≤ u ≤ 1 and moreover Lu(y) ≥ 0. As
〈L(u), u〉 = Lu(y), it follows that Lu(y) = 0 iff u = a1, a ∈ R. Moreover, if
F �= V \ {y}, a = 0 since u = 0 on δ(F ) \ {y}. So, in this case Lu(y) > 0. On the
other hand, if x ∈ F , necessarily u(x) > 0, since otherwise

0 = L(νF∪{y} − νF )(x) = −
∑
z∈V

c(x, z)
(
νF∪{y}(z) − νF (z)

)
≤ 0,

because of Corollary 2.5, and therefore νF∪{y}(z) = νF (z) for all z such that c(x, z) �=
0. Since � is connected, we get that νF∪{y}(y) = νF (y) = 0, which is a contradiction.
Reasoning analogously for v = 1 − u, we get that u < 1 for all z ∈ F .

It is well known that a Dirichlet Problem can be solved by using the associated
Green kernel, so that there should be a relation between the Poisson and Green kernels.
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This relation is well known in the continuous case and we investigate it next for the
discrete case. Let us start by defining the Green kernel for a subset.

A function G : F × F −→ R is called the Green kernel for Problem (3.1) if for
all y ∈ F , Gy = G(·, y) is the solution of the following problem:

LGy = εy in F,

Gy = 0 in δ(F ).

}
(3.3)

Clearly the solution of (3.1) is given by u(x) = g(x) − ∑
y∈F G(x, y)Lg(y). As

before, the Green kernel depends only of F so that it will be denoted by GF .

Proposition 3.4. Let F be a proper subset of V . Then

(i) GF is a symmetric kernel, and GF
y (y) > 0, P

F−{y}
y = GF

y

GF
y (y)

and 0 ≤ GF
y ≤

GF
y (y) for each y ∈ F . can you

reformulate
to avoid
this overfull
line?

(ii) P F (x, y) = εx(y)− ∂
∂ηy

GF (x, y),where ∂
∂ηy

GF (x, y) = − ∑
z∈V c(y, z)GF (x, z)

denotes the normal derivative of GF (x, ·).

(iii) GF (x, y) = νF (y)

||νF ||−||νF
y ||

(
νF (x) − νF

y (x)
)

, where νF
y denotes the equilibrium

measure for the set F − {y}, y ∈ F .

Proof. (i) Clearly, GF is symmetric and non-negative from Proposition 2.4. On the
other hand, if y ∈ F , then GF

y (y) > 0 since otherwise we would have LGF
y (y) =

− ∑
z∈V c(y, z)GF

y (z) ≤ 0, in contradiction with LGF
y = εy . Moreover, if we

consider u = 1
GF

y (y)
GF

y , it follows that u(y) = 1, u = 0 on δ(F ) and in addition

Lu = 0 on F \{y}. Therefore, u = P
F\{y}
y . The last part follows from Proposition 3.3.

(ii) For each y ∈ δ(F ) and each x ∈ F , let u(x) = εx(y) − ∂
∂ηy

GF (x, y). Then

Lu = 0 on F , u(y) = 1 and u = 0 on δ(F ) \ {y}. Hence u = P F
y .

(iii) From (i), GF
y = GF

y (y)P
F\{y}
y . It is enough to find the value GF

y (y) by
imposing the conditions satisfied by the Green kernel. So,

1 = LGF
y (y) = GF

y (y)

νF (y)

(
LνF (y) − LνF

y (y)
)

= GF
y (y)

νF (y)

(
1 − LνF

y (y)
) = GF

y (y)

νF (y)2

(||νF || − ||νF
y ||),

since ||νF
y || = 〈νF

y , 1〉 = 〈νF
y , LνF 〉 = 〈LνF

y , νF 〉 = ||νF || − νF (y)
(
1 − LνF

y (y)
)
.
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4 The effective resistance

The effective resistance between two vertices or two subsets of a network is defined
as the inverse of the current arising from applying to them the unit potential. It is
well known that the effective resistance is the inverse of the energy of the solution
of the Dirichlet problem. It is also known that we can restrict ourselves to the case
in which the source and the sink are single vertices joined with an edge. Here we
look (similarly to the continuous case [1]) at the situation when the vertex boundary
of a set F is partitioned into three subsets: two of them are the source (one vertex)
and the sink (one vertex), and the remaining part of the boundary is insulated. The
general effective resistance can be defined in terms of the energy of the solution of the
corresponding mixed boundary value problem which is solved by using the Poisson
kernel. Then, using equilibrium measures, we deduce an expression for the effective
resistance between two vertices of an electrical network when the remaining part of
the boundary is insulated. If the insulated subset is empty, then we obtain a formula
for the standard effective resistance. We also examine the probabilistic interpretation
of these results.

Let F ⊂ V and δ(F ) = {y} ∪ {z} ∪ D, a partition of the vertex boundary. If the
unit potential is applied across vertices y and z, then, according to Kirchhoff’s Laws,
the potential u at vertices of the network has to be the solution of the following mixed
boundary value problem:

Lu(x) = 0 if x ∈ F,

u(y) = 1,

u(z) = 0,

∂u
∂η

(x) = 0 if x ∈ D,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4)

where ∂u
∂η

(x) = ∑
t∈F c(x, t)

(
u(x) − u(t)

)
is the normal derivative of u at a point

x ∈ D. When D = ∅, Problem (4.4) gives the standard notion of effective resistance
between vertices y and z. From now on we suppose that F ∪ {y} ∪ {z} ∪ D = V ,
because the potentials at vertices of the set V \ (F ∪{y}∪ {z}∪D) are zero and hence
these vertices can be identified with z.

On the other hand, as shown in [3], this problem has a unique solution and can
be transformed into a Dirichlet problem in the following way: consider a new net-
work built from the subnetwork induced by F adding its edge and vertex boundaries.
Specifically, given F , we define the network �(F) = (F , E, c), where E = {(x, t) ∈
E : x ∈ F }, and the conductance function c is the restriction of c to E. We denote the
Laplacian of this network by L = L(�). Note that Lu(x) = Lu(x) if x ∈ F , and
Lu(x) = ∂u

∂η
(x) if x ∈ δ(F ). So, u ∈ C(F ) is the solution of Problem (4.4) iff u is
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the solution of the following Dirichlet problem:

Lu(x) = 0, x ∈ F ∪ D,

u(y) = 1,

u(z) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5)

We define the effective resistance between y and z when D is insulated as RD
yz

=
I(u)−1, where I is the energy with respect to the kernel L. As u(x) = P F∪D(x, y),
to find an expression for the effective resistance we must know the value of P F∪D

y .
Let us see that in this case we can get a simpler expression for that kernel. To simplify
the notation, we will write P yz instead of P V \{y,z}.

Proposition 4.1. Let F ∪D = V \ {y, z}. Then the Poisson kernel for F ∪D is given
by:

P yz(x, y) = νz(x) − νy(x) + νy(z)

νz(y) + νy(z)
and P yz(x, z) = νy(x) − νz(x) + νz(y)

νz(y) + νy(z)
,

where νt denotes the equilibrium measure for the set V \{t} with respect to the kernel L.

Proof. Consider the unique solutions u, v ∈ C(V ) of the problems

Lu(x) = 0, x ∈ F ∪ D

u(y) = 1

u(z) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and

Lv(x) = 0, x ∈ F ∪ D

v(y) = 0

v(z) = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

respectively. Then, both solutions are determined by the identities

u(x) = P yz(x, y) and v(x) = P yz(x, z).

Keeping in mind the expression for P yz given in Proposition 3.1, we obtain that
u = νz−νyz

νz(y)
and v = νy−νyz

νy(z)
, respectively, where νyz denotes the equilibrium measure

for the set V \ {y, z}. On the other hand, as u + v = 1, adding the above expressions
gives

νyz = νzνy(z) + νyνz(y) − νy(z)νz(y)

νy(z) + νz(y)
.

The result then follows from substituting the above expression in the formulas for
P yz(x, y) and P yz(x, z).

Corollary 4.2. Let F be a subset of V such that δ(F ) = {y} ∪ {z} ∪ D. Then

RD
yz = νy(z) + νz(y)

n
.
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Proof. Let u be the solution of problem (4.5). Then, keeping in mind the expression
for the Poisson kernel of the set V \ {y, z} obtained in Proposition 4.1, we get that

I(u) = Lu(y) = 1

νy(z) + νz(y)
L(νz − νy)(y) = n

νy(z) + νz(y)
,

because 0 = 〈νy, L1〉 = 〈Lνy, 1〉 = n − 1 + Lνy(y).

Corollary 4.3. Let z ∈ V. If Gz denotes the Green kernel for the set V \ {z}, then
Gz(y, y) = Ryz. Moreover,

Gz(x, y) = 1

n

(
νz(x) − νy(x) + νy(z)

)
.

Proof. From the proof of Proposition 3.4 (iii), we get that

Gz(y, y) = νz(y)

1 − Lνyz(y)
.

On the other hand, keeping in mind the expression for νyz obtained in the proof of

Proposition 4.1, we get Lνyz(y) = 1
νy(z)+νz(y)

(νy(z) + νz(y)(1 − n)) = 1 − νz(y)
Ryz

.

Hence, Gz(y, y) = Ryz. Moreover from Proposition 3.4 (i),

Gz(x, y) = νz(x) − νy(x) + νy(z)

νz(y) + νy(z)
Ryz = 1

n

(
νz(x) − νy(x) + νy(z)

)
.

We can obtain direct formulas for the Poisson kernel of the set V \ {y, z} and for
the Green kernel for the set V \ {z} in terms of the effective resistance between two
vertices.

Proposition 4.4. Let y, z ∈ V , then
(i) The Green kernel for the set V \ {z} is given by

Gz(x, y) = 1

2

(
Rxz + Ryz − Rxy

)
.

(i) The Poisson kernel for the set V \ {y, z} is given by

P yz(x, y) = 1

2Ryz

(
Rxz + Ryz − Rxy

)
, P yz(x, z) = 1

2Ryz

(
Rxy + Ryz − Rxz

)
.

Proof. (i) From Corollary 4.3 we know that

Gz(x, y) = 1
n

(
νz(x) − νy(x) + νy(z)

)
= 1

2n

(
νz(x) − νy(x) + νy(z) + νz(y) − νx(y) + νx(z)

)
= 1

2

(
Rxz + Ryz − Rxy

)
,

where the second identity follows from the symmetry of the Green kernel.
(ii) It follows from the previous point and from part (i) of Proposition 3.4.
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The expression obtained in the above proposition for the Green kernel is well
known in the context of the so-called resistive inverse. Specifically, given the matrix
(Rxy)x,y∈V of effective resistances of a network, we are interested in finding the matrix
of conductances of the network. Coppersmith et al. [6] gave a simple but obscure
four-step algorithm for computing the resistive inverse. Later, Ponzio [9] gave a self-
contained combinatorial explanation of this algorithm. This relation was also given
by Metz [8] using Dirichlet forms. Here we have obtained a new and simple proof of
that algorithm in term of equilibrium measures.

Some of the concepts considered here have a well-known probabilistic interpreta-
tion. For instance, the effective resistance is related with the escape probability for a
reversible Markov chain. Also, Problem 4.4 can be described in terms of the Neumann
random walk, see [5]. Hence, the general concept of effective resistance corresponds
to a generalization of the escape probability.

Finally, let us consider another Dirichlet problem whose solution has an important
probabilistic meaning. For that, let � = (V , E, c) be the network that has as vertices
the states of a reversible Markov chain and as conductances c(x, y) = π(x)p(x, y),
where p(x, y) is the transition probability from state x to state y and π(x) is the value
of the stationary distribution at state x. Then, the hitting time H(x, y) from x to y,
defined as the expected number of steps in order to reach the state y from the state x,
satisfies the following relations:

LHy(x) = c(x), x ∈ V \ {y},
Hy(y) = 0.

Therefore, by using the expression for the Green kernel Gy we obtain

H(x, y) = 1

n

∑
z∈V

c(z)
(
νz(y) + νy(x) − νz(x)

)
,

and also the well known relation between the hitting time and the effective resistance,
see [10]:

H(x, y) = 1

2

∑
z∈V

c(z)
(
Rxy + Ryz − Rxz

)
.
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